26 3月

几种监督式学习算法的比较

文 / Kevin Markham:电脑工程师;热衷烹饪,痴迷戏剧,偶尔参加铁人三项运动;为General Assembly讲授为期11周的数据科学课程,在SlideRule指导学生学习数据科学,还是约翰·霍普金斯大学数据科学Coursera专项课程的社区教学助理(CTA);业余时间制作视频教程参加Kaggle的比赛。

原文链接:http://www.dataschool.io/comparing-supervised-learning-algorithms/

我所讲授的数据科学课程涵盖了该领域大部分内容,但尤其关注机器学习(machine learning。除了讲授模型的评估过程和度量方法以外,很明显,我们还讲算法本身,主要是监督式学习(supervised learning)算法。

在为期11周的课程接近尾声的时候,我们花了几个小时检查所用的课程资料。我们希望学生能够逐渐理解他们所学的东西。要掌握的技能之一就是在解决机器学习的问题时,有能力在不同的监督式学习算法中做出明智的选择。虽然使用“蛮力”(把每种情况都试一遍,看看哪种最好)的方法有其价值所在,但比这价值大得多的是能够在不同算法之间做出权衡利弊的选择

我决定为学生们组织一场比赛。我给他们一张空白的表格,列出所讲的监督式学习算法,让学生从几个不同维度对这些算法进行比较。我在网上找到了这样的表格,自己先弄一张再说,一起看看

贡献出这张表格,有两个原因:其一,它可以用来讲课或者学习下载下来拿去用吧)。其二,这张表格需要完善,人多力量大!

这张表格是集鄙人经验与研究的产物,在任何这些算法的领域,我都称不上是专家。如果你有能够改进表格的建议,给我留言哟!

  • 是否在我的这些评估中存在误导或错误?(当然啦,有些比较维度本身就带有主观性。)
  • 是否存在应该添加到表格中的其他“重要的”对比维度?
  • 是否还有其他你希望加入到这张表格的算法?(目前,表格中只有我所讲授的算法。)

我意识到每种算法的特征及相应的评价都可以基于数据的具体情况(以及数据的调优程度)发生变化。因此有人会认为试图做“客观”的比较是欠考虑的。然而,我认为作为监督式学习算法入门一般性参考,这张表仍然有其价值所在。

Duang~Duang~Duang~!

学习资源

补充说明:要做“锐推”,请点击这里,还可以来KaggleDataTau讨论!

http://www.csdn.net/article/2015-03-17/2824232